For those not in the US wanting to search for dark skies near you, this website is quite useful.
The black areas represent the remaining natural dark skies in the United States
can I read posts on the internet lightning speed ? yes.
can I read a scientific publication quickly ? also yes !!!
now, can I read a normal book at a somewhat regular speed ? no, I have to re-read the previous page, hell the previous chapter because I forgot what the conversation between the character was about !
Finale got around to processing the photos of M33 I had taken at the end of august. M33 is a spiral galaxy about half the size of our own galaxy and located about 2.7 million light years from earth. This galaxy has a rather high rate of star formation resulting in numerous ionised hydrogen regions (the red irregular blotches inside the galaxy), some of those being notable enough to have been included in the NGC catalogue or the IC catalogue.
NGC 588 NGC 604 (Example of some of the notable nebula in M33)
On of the first recorded observation of this galaxy was possibly done by Giovanni B. Hodierna before 1654, it was independently rediscovered by Charles Messier in 1764 who added it to his catalog (hence the name Messie 33).
information on the photo - total exposure time : 1h48 min using RGB and Ha filters - camera : ASI294 mm - telescope : Newtonian 150/600 with 0.95x coma corrector - photo edited with pixinsight
For those using PixInsight for treatment/edition, I recently discovered the scrips created by Seti Astro (https://www.setiastro.com/pjsr-scripts), Blemish-Blaster was quite useful to remove the halos from my Ha filter and What's In My Image helped with the identification of nebulas. If you had not heard those scrips, you should check them out.
This is a photo of the Andromeda galaxy I took nearly 5 years ago. The dark parts of the galaxy are gigantic clouds of dust and gas in which no stars and planets are born. This galaxy is one the closest one to our own, and yet it's 2.55 million light years from us, It's composed of about 1000 billion stars, in a few billion years it will collide with our own galaxy.
The two lighter blotches around Andromeda are two satellite Galaxys that orbit around Andromeda and are also composed of millions of stars.
Those numbers are so big they start to get inconceivable, and that's only a small fraction of what exists out-there. We are not much in the grand scheme of the universe, but when you look at the night sky and the wonders of the universe you can feel at least for a little while that you're part of it.
Perseus double cluster, had still some time left at the end of the night after the main sequence of photos and before dawn so I took the opportunity to capture about 25 minutes of photos of the double cluster. This is a pair of open clusters of stars (NGC 884 left and NGC 869 right), both are composed mostly of young blue giants and a few red giants in NGC 884. Both clusters have most likely formed from a single gas cloud and are only separated by a few hundred light years. This pair of cluster is relatively bright and can be viewed with the naked eye or a pair of binoculars in dark locations, in those cases, the clusters appear as nebulous region, with a couple of stars resolved with binoculars.
At least viruses are a distinct physical thing, prion on the other hand are just fucked up geometry.
It's just angry geometry that angers the other protein around it. It doesn't even have DNA or RNA!!!
i hate viruses so fucking much. literally getting attacked by a fucking shape. a concept. consumes no energy. responds to no stimuli. its only existence is to fuck with you. like fuck offf
I took another photo of the crescent nebula (C27) this time using my monochrome camera and processed similarly to my photos of the veil nebula. The H-alpha photos really helped to enhance the ionised hydrogen present in this region of space (deep red clouds in the background). Still not completely satisfied with how the stars turned out (too much halo visible around them), could have been mitigated if the clouds had not come half way through the imaging session or if I do another night of imaging of this target.
Friendly reminder that CRT TVs were basically a particule accelerator you had in your living room. They used power supple capable of delivering tens if not hundreds of thousands of volts, to accelerate the electron that were quite literally being boiled of a glowing piece of metal.
They sometime used a lead infused glass as the front plate to limite if not eliminate the small amount of X-ray they emitted towards you.
They had to be heavy because of the thickness of the glass needed to resist the distance of pressure between the atmosphere and extremely low vacuum inside the vacuum tube. It's that difference of pressure that would result in them exploding in a shower of glass shrapnell if the tube was broken.
This is the Crescent nebula it is located in the constellation Cygnus. This nebula is the result of the center star first becoming a red supergiant and ejecting some of its outer layers of gas in space, that gas cloud was then shaped into a bubble by the stellar winds emitted by the central star when it later turned into a Wolf–Rayet star.
The resulting gas bubble is heated and ionised by both the UV rays edited by the start and the stellar winds causing it to glow. Wolf-Rayet stars are the final step of some of the most massive stars before they explode into supernovas. In the case of the crescent nebula, the central star is expected to go supernova within the next few hundred thousand years (We probably still have quite a bit of time left before we observe that).
When a star goes supernova, some of the matter that composed the star is blasted off into space at extremely high velocities (up to 10% of the speed of light). This matter will then slowly (few hundred to a few tens of thousand of years) slow-down and cool-down to for me vast clouds of interstellar dust and gas. This second photo is a part of such a gas cloud, the veil nebula (the center of the western veil, also known as C34). In short, this is the photo of what's left of the corpse of a star that exploded about 10 to 20 thousand years ago.
This reminded me of the isonitrile freezer at my previous internship.
For those who don't know, isonitriles (aka isocyanides) are a class of compounds that contain this motif:
They are known to smell very bad and many synthesis pathways to those compounds were discovered because of their stench. (I personally think they smell like a mixture of rotten cabbage and burned rubber but more ''artificial'')
So in that lab, we had a freezer dedicated to them, and even with sealed bottles in à -20°C freezers in a separated and ventilated cabinet, you would still be able to detect their odour if you stood next to it (not strongly, but still detectable).
We had to move that freezer to a new lab, it stayed unplugged for 15 to 20 minutes, and in the 5 minutes we need to power it back in the new lab, the entire room had filled with that isonitrile stench (mind you that freezer had not been open during the entire operation). Thankfully we did that on a Friday afternoon and by Monday the smell had disappeared.
Just for reference this is from the MSDS of benzyl isonitrile :
found on a fridge in my lab, haha
Astrophotographer & chemist, mid 20'sCurrently on the roof yelling at the clouds to get out of the wayMostly astrophotos I've taken, possibly other science related stuff
51 posts