So I just saw a post by a random personal blog that said “don’t follow me if we never even had a conversation before” and?????? Not to be rude but literally what the fuck??????????
I’ve had people (non-pornbots) try to strike conversation out of nowhere in my DMs recently, and now I’m wondering if they were doing that because they wanted to follow me and thought they needed to interact first. I feel compelled to say, just in case, that it’s totally okay to follow this blog (or my side blog, for that matter) even if we’ve never talked before.
Also, I’m legit confused. Is this how follow culture works right now? It was worded like it’s common sense but is that really a thing?
Finished working on my photo of the hors head.
Technically speaking the Horse Head is only the dark nebula, is bright hydrogen cloud behind it is known as IC434 and the second nebula (bottom left) is the flame nebula. The bright star in the center left is Zeta Orionis also known as Alnitak one of the three stars of Orion's Belt. IC434 primary ionisation source is the multiple star system Sigma Orionis (a bit above the frame), the hydrogen cloud being mostly ionise by the UV coming from those blue giant stars. The streaks visible in the nebulosity are mostly likely due to magnetic field within.
The Flame nebula's ionisation source is hidden behind it's dust cloud and is most likely part of a star cluster that Is only reviled using IR and X-ray imaging.
This photo appears mostly blue/teal wear-as most photos of this nebula are red(ish) this is because this nebula emits most of it's light in the H-alpha (656 nm) and S-II (around 672 nm) wavelength both of which are red, so in classic RGB images the nebula appears red. Initially I thought of doing an SHO image (were red is SII emission, green is H-alpha and blue is OIII) but this nebula lacks OIII emission (around 500 nm), so instead a used a modified SHH palette More precisely, I used SII for the red, a combination of both Ha and SII (0.8Ha + 0.2SII) for green and Ha for blue. The stars were taken separately in RGB and added back to the SHH image.
(Image taken using a CarbonStar 150/600 newtonian telescope with a 0.95 coma corrector, ZWO ASI294 monochrome camera and Baader 6.5nm SHO filter. 5x120s image for each colour filter (RGB), 22x300s for the Ha filter and 32x300s for the SII filter, total imaging time 5h, stacking and processing done in PixInsight.)
Picture of M27, the Dumbbell nebula (aka the Apple Core Nebula), I took at the end of last month. This is a planetary nebula, it's the result of a star similar to our sun, that had turned into a red giant at the end of its life, ejecting its outer layer of gas and plasma into space. A planetary nebula is probably a relatively ''short'' phenomena, lasting around 10 000 years. Once the central star has ejected most of its hydrogen/helium and that the nuclear fusion in it has stopped, the nebula will start to cool down and disappear while the star turns into a white dwarf. Planetary nebula have an important role in redistributing some of the matter from dead/dying stars in the interstellar medium.
I personally think that photo is good, but some of the more faint external structures are barely visible, might take another picture of it and/or more photos to stack later in the month.
This is a picture of the hydrogen and dust cloud surrounding the star Sadr (the bright white dot near the center) also known as IC 1318. The bright parts represent hydrogen clouds and the dark parts dust clouds. Those types of clouds are the birthplace of new stars. This particular photo is in black and white because it was made by using a filter that lets only the light emitted by ionised hydrogen (the H alpha spectral line) pass through it. This increases the visibility of the hydrogen clouds. Since this light is at 656 nm, it would appear bright red if coloured. Together with H beta (496 nm) also from hydrogen and O III (around 500 nm) from oxygen both cyan in color, they represent the majority of light emitted by gas clouds. So in conclusion if you were able to see this gas cloud directly it would appear a reddish-magenta color (H alpha being the dominant emission).
“the arts and sciences are completely separate fields that should be pitted against each other” the overlap of the arts and sciences make up our entire perceivable reality they r fucking on the couch
For those not in the US wanting to search for dark skies near you, this website is quite useful.
The black areas represent the remaining natural dark skies in the United States
sometimes astronomy camera companies will post about their horrible attempts to fix hardware problems with software. normally these are unremarkable.
and then sometimes they contain a beautiful single sentence that will live in your brain forever
Just got a week of clear weather will I had access to my telescope, managed to get a good amount of data, treatment will have to wait though (I have some exams in 2 weeks). In the meantime, here's a quick test I did with the horse head nebula.
This is a SHH composition (there is nearly no OIII emission in this nebula and I did bother imaging in this wavelength).
Finale got around to processing the photos of M33 I had taken at the end of august. M33 is a spiral galaxy about half the size of our own galaxy and located about 2.7 million light years from earth. This galaxy has a rather high rate of star formation resulting in numerous ionised hydrogen regions (the red irregular blotches inside the galaxy), some of those being notable enough to have been included in the NGC catalogue or the IC catalogue.
NGC 588 NGC 604 (Example of some of the notable nebula in M33)
On of the first recorded observation of this galaxy was possibly done by Giovanni B. Hodierna before 1654, it was independently rediscovered by Charles Messier in 1764 who added it to his catalog (hence the name Messie 33).
information on the photo - total exposure time : 1h48 min using RGB and Ha filters - camera : ASI294 mm - telescope : Newtonian 150/600 with 0.95x coma corrector - photo edited with pixinsight
For those using PixInsight for treatment/edition, I recently discovered the scrips created by Seti Astro (https://www.setiastro.com/pjsr-scripts), Blemish-Blaster was quite useful to remove the halos from my Ha filter and What's In My Image helped with the identification of nebulas. If you had not heard those scrips, you should check them out.
Photo of NGC 7000 / the North American nebula (southern part), the bright star on the top left corner is ξ Cygni. Might rework it later since this one still has a bit too much gradient/haze due to the full moon when I took the photos. In most cases, emission nebula are the result of gas clouds being ionised by the high energy UV radiation coming from very Hot (and often massive) stars/star cluster. In the case of NGC 7000 the star(s) responsible for most of the ionisation was an unknown for quite a long time, it is only in 2004 that the star responsible for the ionisation was located. This star (actually a binary system according to later publication) known as J205551.3+435225 is located behind the dark region of the nebula (bottom right corner of the photo) which explains why it was only recently identified.
(My best guess of the position of J205551.3+435225 in my picture according to what I can find in the original publication and in the SIMBAD database)
One last thing, that star was later nicknamed Bajamar Star, which comes from the original Spanish name for the Bahamas island.
Photo of the Iris nebula / Caldwell 4 / NGC 7023, I'm very pleased with this one since I finally managed to capture the surrounding dust (barely visible in the 2 previous attempts). This is a reflection nebula, this means that it's a dust cloud reflecting the light from a nearby star. Being one of the brightest reflection nebula visible in the northern hemisphere it's visible in relatively small telescopes (4-6 inch / 100-150mm diameter), unfortunately the outer dust clouds can only be seen on photos. Reflection nebula generally tend to be blue due to a more efficient scattering of blue light compared to red by the dust particles (M45 in my previous post is another good example).
Astrophotographer & chemist, mid 20'sCurrently on the roof yelling at the clouds to get out of the wayMostly astrophotos I've taken, possibly other science related stuff
51 posts